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Abstract. We show that in the limit of negligible pump depletion, the spatial distribution of the quantum
fluctuations in spontaneous parametric down-conversion can be computed for any shape of the pump beam
by using the Green’s function method to linearize the quantum fluctuations, even for very low levels of
the intensities measured on the pixels. The results are in complete agreement with stochastic simulations
of the Wigner distribution. Both methods show specific quantum effects in realistic situations close to the
experiments now in progress, like sub-shot noise correlation between opposite pixels in the far field.

PACS. 42.65.Yj Optical parametric oscillators and amplifiers – 42.50.-p Quantum optics –
42.65.-k Nonlinear optics

1 Introduction

The spatial quantum properties of spontaneous down-
conversion (SPDC), or parametric fluorescence, have re-
cently attracted considerable interest. In the photon
counting regime, the quantum spatial correlation between
the “twin photons” emitted by parametric fluorescence in
symmetric directions has been the object of numerous ex-
periments, for example for two-photon imaging [1]. When
one uses more powerful pulsed lasers as a pump, the para-
metric gain is higher and the photons can no longer be sep-
arately detected. One uses in this situation low dark noise
CCD cameras to record the intensity distribution of the
generated field, and the mean number of photons accumu-
lated on each pixel is still very low. If one increases further
the pump intensity, one then reaches the domain of “con-
tinuous variables”, when the measured intensity can be
viewed as a continuously varying quantity. In this regime,
the fluctuations of the intensities measured on opposite
pixels in the far field have been theoretically demonstrated
to be correlated well below the quantum level [2] provided
that the size of a pixel is greater than the coherence area.
Hence, the concept of “twin beams” [3] produced in sin-
gle transverse mode devices can be generalised to “twin
images” [4] in the multimode case. On the experimental
side, a strong correlation between spatial fluctuations of
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the intensity on opposite pixels has been demonstrated
on images of SPDC recorded in the far-field on a CCD
camera [5,6], though still only at a classical level.

The prediction of the spatial distribution of the quan-
tum fluctuations in realistic situations close to the exper-
imental ones and in the regime of a few photons per pixel
is not a simple task, as it involves the calculation of op-
erator mean values that cannot be made analytically in
most cases, because of the nonlinear character of para-
metric interaction. Various approximate theoretical tech-
niques have been used to deal with such problems. Among
the most successful ones are the Monte-Carlo simulations
of the quantum fluctuations. They rely on the numerical
resolution of a stochastic equation for these fluctuations
derived in the framework of a given representation, such
as the P, positive-P or Wigner representation [7]. Another
powerful technique is the so-called semi-classical or lin-
earization method. It is based on the fact that the quan-
tum moments of the Wigner distribution, corresponding
to symmetrically-ordered operators, can be calculated by
propagation of classical fields in the limit of weak quantum
fluctuations with respect to the input fields. This lineariza-
tion method, which is widely used to treat single mode
problems [8], is at first sight limited to the case of intense
fields. It has been recently employed to calculate the spa-
tial distribution of the quantum fluctuations in a spatial
soliton [9] and in the Optical Parametric Oscillator below
threshold [10]. In this latter case however, the mean value
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of the signal field is zero and the linearization procedure
corresponds to neglecting pump depletion, showing that
linear and linearized systems can be described in similar
ways.

The purpose of this paper is to extend the Green’s
function method used in the spatial soliton case to the
problem of spontaneous down-conversion in a travelling
wave amplifier with a non ideal profile of the pump beam,
and to compare its results with stochastic simulations pro-
posed in references [11,12], in order to be able to make
reliable predictions of the results of experiments currently
in progress in Besançon [13] and Como [14]. In Section 2,
we will recall the main aspects of the linear approach and
show how to extend it to the problem of SPDC using a
Green’s function approach. In Section 3 we make a brief
review of the stochastic method, and compare in Section 4
the results of the two methods. While the Green’s func-
tion method gives directly the quantum moments of fluc-
tuations, the stochastic images exhibit spatial statistical
fluctuations, like the experimental images. Section 5 com-
pares the statistical properties of these spatial fluctuations
with the quantum moments calculated with the Green’s
function method. In Section 6, we conclude by stressing
some advantages and drawbacks of the two methods and
give some directions for the development of these methods.

2 Linear approach of parametric fluorescence

The classical propagation equation of the positive fre-
quency field envelope A of the sub-harmonic field in the
paraxial approximation is given by [15]:

i
d

dz
A(�r, z) +

1
2k

∇2
T A(�r, z) =

ω2

kc2
deff Ap(�r, z)A∗(�r, z)e−i∆kz (1)

where Ap is the pump field at frequency 2ω, deff is the
effective nonlinear coefficient in the considered direction,
∆k is the collinear phase-mismatch vector, z the main
propagation direction, �r the transverse position and ∇2

T
the transverse Laplacian. In the undepleted pump approx-
imation, the pump field Ap is not affected by the inter-
action and can be treated as a classical variable. This
situation is similar to the problem of the OPO below
threshold [10]. Assuming that in equation (1) Ap is in-
dependent of z, one then obtains the following quantum
linear equation by replacing the field A by its quantum
operator counterpart:

i
d

dz
Â(�r, z) +

1
2k

∇2
T Â(�r, z) =

ω2

kc2
deff Ap(�r)Â†(�r, z)e−i∆kz . (2)

This equation is also valid when one replaces Â (�r, z)
and Â† (�r, z) respectively by the annihilation and creation
operators â (�r, z) and â† (�r, z) of a photon at point (�r, z),

because these operators are proportional. These creation
and annihilation operators verify [16]:

[
â(�r, z), â†(�r ′, z)

]
= δ(�r − �r ′), [â(�r, z), â(�r ′, z)] = 0.

(3)
We consider in this paper single temporal modes, so that
the calculated mean values have only a spatial variation.
This simplified situation corresponds to measurements
performed by a CCD camera on light integrated over the
duration of the pump pulse and filtered in wavelength in
order to obtain a minimum time-bandwidth product. We
have shown [13] that the experimental distribution of spa-
tial fluctuations in such a case corresponds to the single-
mode statistics of SPDC.

Let us now consider a non linear crystal of length l, and
let us call âin(�r) and âout(�r) the annihilation operators
at the input (z = 0) and output (z = l) of the crystal,
respectively. In the undepleted pump approximation and
in the absence of losses [17], the output operators can be
expressed as linear functions of the input operators:

âout(�r) =
∫

d�r1

[
G(�r, �r1)âin(�r1) + H(�r, �r1)â

†
in(�r1)

]

â†
out(�r) =

∫
d�r1

[
G∗(�r, �r1)â

†
in(�r1) + H∗(�r, �r1)âin(�r1)

]
(4)

where G and H are the Green’s functions of the propaga-
tion equation (2).

The quantum spatial correlations in the intensity fluc-
tuations are then described by the normally ordered co-
variance function C̃(�r, �r ′) between two points of the far
field. By making use of a general property characterizing
fields with a Gaussian statistics [18], it can be expressed
as a sum of products of second-order covariance functions:

C̃(�r, �r ′) = 〈: δN̂(�r)δN̂(�r ′) :〉
= |〈â†

out(�r)âout(�r ′)〉|2 + |〈âout(�r)âout(�r ′)〉|2 (5)

where N̂ is the photon number operator. The symbol : :
denotes normal ordering (n.o.). In particular, the n.o. vari-
ance C̃(�r, �r) implies the subtraction of the shot noise to
the total variance. The mean value is taken over the quan-
tum state present at the input of the crystal, which is here
the vacuum at all points of the input transverse plane.
The second-order covariance functions appearing in equa-
tion (5) can then be easily calculated in terms of the
Green’s functions:

〈â†
out(�r)âout(�r ′)〉 =

∫
d�r1 [H∗(�r, �r1)H(�r ′, �r1)]

〈âout(�r)âout(�r ′)〉 =
∫

d�r1 [G(�r, �r1)H(�r ′, �r1)] (6)

where the free-field commutation relation (3) has been
used.
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Let us now introduce the two quadrature operators,
qout and pout, which are given by:

q̂out(�r) =
âout(�r) + â†

out(�r)√
2

p̂out(�r) =
i(â†

out(�r) − âout(�r))√
2

. (7)

These Hermitian operators can be expressed in terms of
the Green’s functions as follows:

q̂out(�r) =
1√
2

∫
d�r1

[
{G(�r, �r1) + H∗(�r, �r1)} âin(�r1)

+ {G(�r, �r1) + H∗(�r, �r1)}∗ â†
in(�r1)

]

=
∫

d�r1

[
Re {G∗(�r, �r1) + H(�r, �r1)} q̂in(�r1)

+ Im {G∗(�r, �r1) + H(�r, �r1)} p̂in(�r1)
]

(8)

and

p̂out(�r) =
i√
2

∫
d�r1

[
{H∗(�r, �r1) − G(�r, �r1)} âin(�r1)

+ {G∗(�r, �r1) − H(�r, �r1)} â†
in(�r1)

]

=
∫

d�r1

[
Im {G(�r, �r1) − H∗(�r, �r1)} q̂in(�r1)

+ Re {G(�r, �r1) − H∗(�r, �r1)} p̂in(�r1)
]

(9)

where Re and Im denote the real and the imaginary part.
The propagation of these quadrature operators is gov-

erned by equation (2). However, the similar form of equa-
tions (1, 2) implies that their corresponding Green’s func-
tions are the same. Hence, one can directly numerically
compute the value of the Green’s functions using a delta
function successively on both quadratures as an initial
condition [9] in the classical propagation equation (1).
In this classical equation, the phase of the input quadra-
tures qin and pin corresponds respectively to a maximum
amplification or deamplification. The output quadrature
fields obtained through the numerical propagation of this
delta-like input functions are directly proportional to lin-
ear combinations of the Green’s functions. It is then easy
to deduce the actual value of G and H after the numerical
propagation of a delta function centered at each point of
the transverse plane.

To summarize this section, the Green’s functions H
and G can be numerically computed as linear combina-
tions of output fields obtained by propagation of delta
function input fields. The propagation of these input fields
must be computed for each position in the output crys-
tal plane and for both input quadratures. The knowledge
of these Green’s functions allows us to compute all the
output covariance functions.

3 Stochastic simulation of the fluctuations

In the linear approximation, one can show [7] that the
Wigner distribution of the output field can be simulated

simply by integrating the classical propagation equations
starting from a stochastic field which has the phase-space
distribution determined by the input field Wigner func-
tion. In the following we shall denote with α the stochas-
tic field and with 〈. . .〉stoch the corresponding stochastic
averages, in order to distinguish them from quantum-
mechanical operators and their expectation values, de-
noted as usual with 〈. . .〉 and â. Within the Wigner repre-
sentation we have the identification between the different
moments of the stochastic field and the expectation values
of the corresponding symmetrized operator:

〈. . .〉stoch ↔ 〈. . .〉SYMMETRIZED OPERATORS . (10)

In the discretized model used in the numerical simulations
the position coordinates �r becomes a discrete index indi-
cating the pixel of the numerical grid (or the square pixels
of a CCD camera) and the continuous fields a(�r) and α(�r)
are replaced with the discrete field a�r and α�r respectively,
which we define according to the relation

â�r =
1√
∆S

∫
R(�r)

â(�r, z), α�r =
1√
∆S

∫
R(�r)

α(�r, z).

(11)
The integrals on the r.h.s. are performed on the considered
pixel region R(�r) and ∆S denotes the pixel area. With
such a normalization and assuming that ∆S is small com-
pared to the field scale of variation, â+

�r â�r gives the mean
number of photons detected in pixel �r and commutation
relations (3) become[

â�r, â
+
�r ′

]
= δ�r,�r ′ , [â�r, â�r ′ ] = 0, (12)

where δ�r,�r ′ denotes the Kronecker’s symbol. In general the
quantities measured in an experiment do not correspond
to symmetrized operators, so that correction terms must
be added to the averages made on the stochastic fields
to obtain the desired ordering. For example, according to
relation (11) and commutation rules (12), the expectation
of the photon number in pixel �r is given by

〈
â+

�r â�r

〉
= 〈α∗

�r α�r〉stoch − 1
2
. (13)

Similarly, the discretized version of the n.o. photon num-
ber covariance functions defined in equation (5) is ob-
tained from the relation

C̃�r,r̄′ ≡ 〈
â+

�r â+
�r ′ â�r ′ â�r

〉 − 〈
â+

�r â�r

〉 〈
â+

�r ′ â�r ′
〉

= 〈α∗
�r α�r α∗

�r ′ α�r ′〉stoch − 〈α∗
�r α�r〉stoch 〈α∗

�r ′ α�r ′〉stoch
− δ�r,�r ′

[
〈α∗

�r α�r〉stoch − 1
4

]
. (14)

To perform the Monte-Carlo numerical simulations, we
proceed with the following steps:

– we generate the stochastic input field with the ap-
propriate phase-probability distribution corresponding
to the vacuum field in the Wigner representation, i.e.
Gaussian white noise with zero mean and a random
phase, such that 〈α∗

�r α�r〉stoch = 1/2, in agreement with
equation (13);



440 The European Physical Journal D

– the propagation of the stochastic field is then evaluated
by integrating the classical propagation equation (1),
which are solved with a split-step algorithm;

– the expectations of the symmetrically ordered opera-
tors are estimated by averaging the results over a great
number of trajectories (10 [4] in the present paper).
The procedure must indeed be reiterated a sufficiently
large number of times, so that the stochastic averages
performed on the output field become good approx-
imations to the corresponding quantum expectation
values;

– following the examples of equations (13, 14), all the
expectation values of the covariance functions in the
desired ordering are then obtained from these stochas-
tic averages by applying the appropriate corrections
which can be derived using relation (10) and commu-
tation rules (12).

We note finally that the single trajectories of the
Monte-Carlo simulation reproduce well the spatial fea-
tures of SPDC obtained experimentally from a single
pump shot in the high gain regime.

4 Comparison between the two approaches

While the formalism presented in Section 2 can be applied
to calculate near-field expectations (i.e. intensities in the
image of the output face of the crystal) as well as far-field
expectations (Fourier plane), all presented results will be
given in the far-field, because quantum effects are more
visible in this plane [1]. The formalism of Section 2 can be
applied without difficulties to this configuration, simply
by making a Fourier transform of the fields at the output.

Figure 1 presents the near field image of the pump
beam intensity that we have employed in all the simu-
lations. Its phase is assumed to be constant over all the
transverse plane. This pump beam, recorded in our pre-
vious experimental works [6], is strongly elliptical, with
an horizontal dimension much greater than the vertical
one. In the present paper, its intensity has been chosen
in order to ensure a low parametric fluorescence, where
quantum effects are stronger. More precisely, the maxi-
mum gain in amplitude on the amplified quadrature is
exp(gmaxl) = 5.5, giving a maximum number of output
photons per spatial mode of sh2(gl) = 7.

The crystal, which has a length l = 2 mm, is sup-
posed to be oriented in such a way that one has perfect
phase matching in directions making a cone with respect
to the main propagation direction. The pixellisation of the
image plane must be performed at a spatial frequency suf-
ficiently greater than twice that corresponding to phase-
matching bandwidth [19]. Because the proposed compu-
tation method uses four dimensional arrays (2 points with
2 transverse coordinates), the number of pixels has been
limited to 48 × 48.

Figure 2a presents the computed mean intensity of
parametric fluorescence in the far field, given by the first
of equations (6) with �r = �r ′. As expected, the shape re-
produces the gain variation due to the phase-matching

Fig. 1. Experimental cartography of the pump field. The in-
tensity is given in arbitrary units and the lateral dimensions
are given in mm.

conditions: the ring shape corresponds a crystal oriented
in order to obtain non collinear phase-matching. From
this mean intensity we can deduce the size of a coher-
ence area as follows. The maximum gain in amplitude,
for perfect phase-matching, on the amplified quadrature
is exp(gmaxl) = 5.5, giving a maximum number of out-
put photons per spatial mode of sh2(gmaxl) = 7. In the
far field, these photons spread out in a coherence area,
whose size scales as the inverse of the size of the fluores-
cence beam in the near field. Hence, the sum of the mean
intensity, expressed in photons per pixel, on all pixels in
a coherence area corresponds to the number of photons
in one mode and the coherence area can be estimated as
the ratio between the number of photons for perfect phase
matching in one mode and the maximum mean intensity
per pixel. The result is 7/0.32 = 22 pixels per coherence
area. This size is much smaller than in the experiments
of reference [5], with the same pump shape, because the
crystal length and the mean pump intensity are smaller in
the present simulation than in these experiments, result-
ing in a larger, though less intense, fluorescence beam at
the output face of the crystal and in a narrower coherence
area in the far field.

Figure 2b presents the results obtained by the stochas-
tic method, following the procedure indicated above, in
the same conditions as in Figure 2a. We can observe that
there is a very good agreement between the two results,
in intensity and size, even when the mean is very close to
zero, within statistical errors corresponding to the number
of shots used in the average.

Figures 3a and 3b present the same type of compari-
son, but now for the n.o. variance, i.e. the difference be-
tween the variance and the shot noise C̃�r,�r = 〈: (δN̂�r)2 :〉.
Figures 3a and 3b are respectively obtained using the
Green’s function and the stochastic methods, and one ob-
serves again a good agreement between them, both in size
and intensity. A striking point is that the value of the
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(a)

(b)

Fig. 2. (a) Mean intensity in the far field, in photons per pixel,
determined by the Green’s function method. The coordinates
are graduated in pixels. The pixel size p is given in angle units
by the laws of Fourier optics: p = λ/L, where λ = 1.064 µm
is the wavelength and L = 1 mm the lateral size of the sam-
pled crystal area in the near-field. (b) Mean intensity in the
far field determined by the stochastic method, averaged over
10 000 shots, with the same units as (a).

variance is roughly doubled on the pixel at the centre.
This feature is confirmed by an analytical calculation, de-
tailed in Appendix: the second term in equation (5) gives
a contribution at the origin where opposite pixels merge,
while it vanishes elsewhere.

Figure 4 provides the same comparison, but now for
the intensity correlations between different pixels, repre-
sented by the measure of the covariance function C̃(�r, �r ′)
(Eq. (5)) for any value of �r ′ and a particular value of �r
(�r = (x, y) = (22, 18)). Here also, there is a very good
agreement between the two results. One observes, as ex-
pected, that there exist strong correlations between the

(a)

(b)

Fig. 3. Distribution of C̃(�r, �r ′ = �r) = 〈: (δN̂(�r))2 :〉 in the far
field plane (same conditions as in Fig. 2). (a) Green’s function
method; (b) stochastic average.

considered pixel and the symmetrical one with respect
to the propagation axis. One also observes, as already
quoted in reference [1], that the covariance between oppo-
site points (signal-idler covariance, C̃�r,−�r) is larger than
the covariance between nearby points (signal-signal n.o.
variance, C̃�r,�r) [20]. This property has no classical counter-
part [2]. One can also clearly see that the elliptical shape
of the pump beam results in stretching the shape of the
covariance area in the orthogonal direction, as expected
in the Fourier plane.

The existence of this large covariance peak implies that
the variance V− on the difference between the intensities
recorded on opposite pixels is significantly below the shot
noise level, provided that the pixel has a sufficient size
to include at least a coherence area [2]. If it is not the
case, pixels must be binned to increase the detection area.
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(a)

(b)

Fig. 4. Covariance between intensity fluctuations measured
on pixel (x = 22, y = 18) and all the other pixels, (in square
photons) (same conditions as in Fig. 2). (a) Green’s function
method; (b) stochastic average.

In order to correspond to an experimentally measurable
quantity, V− is defined as including the shot noise terms,
and not only the n.o. covariance terms. After binning, V−
reads as:

V− = SN− +
∑

�r

∑
�r ′

[
C̃�r,�r ′ + C̃−�r,−�r ′ − 2C̃�r,−�r ′

]
(15)

with
SN− =

∑
�r

N�r +
∑

�r

N−�r. (16)

The sum over �r and �r ′ is extended to the binned pix-
els composing one of the two symmetrical detection area,
and C̃�r,�r is the covariance between two pixels defined in
equation (14). Equation (16) expresses in a standard way
the covariance of a difference. SN− represents the shot
noise contribution on the two detection areas, while the

Fig. 5. Plot of the variance V − evaluated for two symmetri-
cal square detection area of n × n binned pixels as a function
of n. The first area is centred in (x = 22, y = 18). Full lines:
Green’s function method. Stars and cross: stochastic averages.
The data in red give the ratio between this variance V − and
the shot noise level SN−.

last three terms in equation (16) determine the contribu-
tions due to the field correlations. The sum over these last
three terms is negative, leading to the sub-shot noise value
of V−.

For the stochastic averages, the formulae are simpler,
because the total number of photons on a pixel after bin-
ning can be easily computed for each shot, as well as
the difference between the energy of two opposite pixels.
Hence V− is simply given by the variance of this differ-
ence. However the corrections for symmetrically ordering
the operators must take into account the binning and the
difference: the corrections on the mean and on the variance
scale as the number of binned pixels (the total number on
both the signal and the idler for V−).

Figure 5 gives the results for the pixel centred at
(x = 22, y = 18) and its opposite. We have verified that
the small differences between both methods are uniquely
due to the residual random character of the averages (for
example in the case of a 9×9 binning, using the 5000 first
shots gives a V− of 4.53, instead of 5.55 for 10 000 shots).
As expected, the ratio V −/SN− decreases when the num-
ber of binned pixels is increased. For a pixel much smaller
than the coherence area, it has been shown [2] that the
contribution due to the correlation terms on the r.h.s.
of equation (16) becomes negligible compared to SN−
and V − tends to the shot noise level. In the opposite situ-
ation, when the binned pixels cover an area which is large
compared to the coherence area, the effect of correlations
becomes relevant and the ratio between V − and the level
of shot noise goes to zero. Here, a 5×5 binning corresponds
roughly to a coherence area, which has an estimated sur-
face of 22 pixels.
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Table 1. Labels (1): values of the variance from the Green’s function method (with shot-noise or after subtracting the mean,
which gives the departure from the shot noise) of a pixel on a circle in one image and of the covariance of one pixel with its
opposite in one image. Labels (2): expectation values from the stochastic approach of the corresponding variance without and
with normal ordering [n.o.], and of the covariance between opposite points on the circle, averaged over 10 000 shots.

Circle diameter (pixels) V (1) V (2) V (1) [n.o.] V (2)-mean Cov (1) Cov (2)

15 0.394 0.382 0.092 0.080 0.194 0.174

30 0.417 0.411 0.100 0.093 0.211 0.200

39 0.323 0.329 0.066 0.067 0.150 0.150

5 Assessment of spatial fluctuations

All the above-presented results deal with the variation of
the energy on one pixel from one shot to another. How-
ever, the information on a weak image is corrupted by the
spatial fluctuations even in one shot and it is important
to assess the statistical properties of these spatial fluctu-
ations. Only the stochastic method provides this assess-
ment, because the Green’s function method gives directly
the expectation values of the pixels, that are not random
quantities in one image. We will see however that some
kind of ergodicity holds in the present case, and that the
fluctuations measured on pixels from one shot to another
or within an image have the same statistical behaviour.
To ensure that all pixels used in the statistics have the
same expectation value, we use only pixels on a circle cen-
tred on the optical axis. For each shot, the variance is
calculated for the pixels on the circle. Then the values for
10 000 shots are averaged and the appropriate corrections
are performed. The procedure is repeated for the covari-
ance between opposite pixels and the results are compared
to that of the Green’s function method for one pixel (vari-
ance as in Fig. 3 and covariance between opposite pixels
as in Fig. 4).

Table 1 gives the corresponding results for three cir-
cles, corresponding to three different phase-matching con-
ditions. One observes that the values from the stochas-
tic approach are close to that obtained by the Green’s
function method for one pixel of the corresponding circle.
However, there is a large dispersion of the obtained vari-
ances: in other words, they strongly vary from one shot to
another (including negative values for the corrected vari-
ance). For example the standard deviation of the variance
on the circle with a diameter of 15 pixels is 0.19, i.e. more
than twice the mean variance. This standard deviation
is due to the small number of independent spatial modes
that are involved in the estimation of each one-shot spatial
variance. However, the almost equality between the aver-
age of the one-shot variances and the shot to shot variance
confirms that the statistical behaviour is the same in both
cases.

6 Conclusion

The spatial quantum properties of parametric fluorescence
are now well investigated, at least at the theoretical level.
However, obtaining numerical values likely to be compared
with actual experimental situations implies the need to

be able to simulate realistic non ideal situations with,
for example, a non circular shape of the pump beam. We
have shown that at the limit where the pump depletion
is negligible two approaches can be used to predict the
results in such situations. The Monte-Carlo simulation of
the Wigner representation gives the quantum moments
at the limit of a great number of random realisations af-
ter averaging and appropriate corrections to take into ac-
count operator ordering. In the limit of an infinite num-
ber of random realisations, its results converge to those of
the Green’s function method. Moreover, the Monte-Carlo
method reproduces to some extent the spatial fluctuations
of the image on one shot, at least for high gains. For lower
gains where ordering corrections are not negligible, the
connection between a simulated image from one shot and
its experimental counterpart is much less straightforward
and a correct simulation of such an experimental image
appears as an unsolved and difficult problem.

The Green’s function method presented in this paper
has the advantage of directly giving the expectation val-
ues, without any averaging of random images, even when
the mean number of photons detected on the pixels is very
low. The extension of the Green’s function method to the
time-domain is easy in principle; however, it would imply
6-dimensional arrays, that could lead to numerical prob-
lems with many temporal modes. Hence, both methods
appear complementary to apply to quantum optics the
numerical methods that allow the simulation of propaga-
tion of classical fields in realistic non ideal situations.

This work has been supported by the European Union in the
frame of the Quantim network (contract IST 2000-26019).

Appendix

We show in this annex that equation (5) implies a n.o.
variance at the center of the far field that takes a value
about twice that of its neighbours.

We start from the analytic expression of the far field
obtained in the focal plane of a lens set at a distance f
from the crystal outpout face, f being the focal length of
the crystal:

âout(�r) =
2πi

λf

∫
d�r ′p(�r − �r ′)

×
(

u(�r ′)ain

(
2π�r ′

λf

)
+ v(�r ′)a†

in

(
−2π�r ′

λf

))
. (A.1)
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This input-output relation has been derived in refer-
ence [2] within the framework of the plane-wave pump ap-
proximation. λ is the signal wavelength and the response
function p(�r) is the far field diffraction pattern due to a
fictitious pupil of area Spupil set on the crystal output face.
This pupil is used to take into account the finite size of
the system in the transverse plane and can be identified
with the effective cross-section area of the pump beam.
u(�r) and v(�r) are gain functions determined by the phase
matching conditions inside the crystal and obey the usual
unitary relation |u(�r)|2 − |v(�r)|2 = 1. As in reference [2],
we assume that the effect of diffraction is sufficiently small
to consider these gain functions as constants in the inte-
gration of equation (A.1). The following approximations
can then be used:

|p (�r)| = δ (�r) , |p (�r)|2 =
1

Sdiff
δ (�r) (A.2)

where Sdiff = (λf)2/Spupil denotes the area of the diffrac-
tion pattern. Applying the same commutation rules as
equation (3) for ain(�q) and using equations (A.1, A.2),
we find that the second term in the r.h.s of equa-
tion (5) vanishes everywhere except in the origin, when
this equation describes the n.o. variance. More precisely
we obtain

|〈âout(�r)âout(�r)〉|2 =




0, �r �= 0,

(
1

Sdiff
|u(�r)v(�r)|

)2

, �r = 0.

(A.3)
For �r = 0, this term adds to the first term in equation (5),
this first term being proportional to v4. In the numerical
results of this paper, v2

max(�r) = sh2(gmaxl) = 7, giving
v2(�r = 0) ≈ 6 (see Fig. 2a) and (u(0)v(0))2 ≈ 42. Hence,
the n.o. variance is more than doubled at the center of the
far-field, as it is clearly visible in Figure 3. This doubling
occurs on an area of the order of Sdiff and can be explained
by noting that the collinear mode �q = 0 is fully degenerate.
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